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ABSTRACT 

Several studies have been accomplished in 
the area of identification of mechanical systems 
and there is a tendency of introducing artificial 
intelligence in projects of signal monitoring, 
which would allow automation in the process 
and characterization of faults, even for complex 
systems. The problem of variables identification 
or damage detection in mechanical systems is a 
class of inverse problem and, therefore, it 
doesn't present a unique solution. The inverse 
problem consists in determining the causes 
based on some observation of their effects and 
the damaged parameters (crack length and/or 
location) can be calculated in frequency 
domain. The proposed methodology in this 
paper works on frequency domain, and it uses 
in a first stage, the electric impedance method 
to determine the location of faults. Later in a 
second stage takes place the quantification of 
the faults intensity by using genetic algorithms. 
The paper concludes with an example of a 
structure in order to verify the proposed 
methodology. 

 
INTRODUCTION 

The impedance-based health monitoring 
technique has been applied to a wide variety of 
structures as a promising tool for real-time 
structural damage assessments. The basic 
concept of this technique is to monitor the 
variations in the structural mechanical 
impedance caused by the presence of damage 
[1]. Because structural mechanical impedance 
measurements can be difficult to obtain, the 
technique utilizes the electro-mechanically 
coupling property of piezoelectric materials 
(PZT). In this coupling property, the PZT’s 
electrical impedance is directly related to the 

mechanical impedance, and will be also 
affected by the presence of damage. 

In essence damage detection, localization 
and identification problems are inverse 
problems [2], since from the vibration response 
of the structure one seeks to obtain information 
about its condition (whether the structure is 
damaged, or not, what kind of defect is present, 
how big is the defect, etc…). Thus, given 
information about the vibration response of a 
structure (in the form of frequency response 
functions, or modal characteristics), the 
following inverse problems are addressed: 
Damage detection problem; damage 
localization problem and damage quantification 
problem. 

Inverse problems and crack identification 
problems are of paramount importance for 
health monitoring and crack identification 
problems in critical applications in civil, 
aeronautical, nuclear, and general mechanical 
engineering. Crack identification problems are 
considered as output error minimization for 
appropriately parametrized mechanical models 
of structures with cracks in statics and 
dynamics. The inverse problems are formulated 
as output error minimization problems and they 
are theoretically studied as a believe 
optimization problem [3]. Beyond classical 
numerical optimization, computing tools (for 
exemplo genetic algorithms) are used for the 
numerical solution. Mathematical modeling and 
the numerical study of these problems require 
high knowledge in computational mechanics 
and applied optimization. Representative results 
of this work in progress include genetic 
algorithm optimization for fault quantification 
applied to beam structure. 
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Genetic Algorithm (GA) is a technique 
based on Darwin’s evolution theory. An GA 
simulates an adaptation process taking an initial 
population of individuals and applying artificial 
genetic operators in each generation. Under 
optimization conditions, each individual of the 
population is codified as a string or 
chromosomes, which it represents a possible 
solution for a certain problem, while the 
individual adaptation is evaluated through a 
fitness function. Basically, to the individuals 
highly capable (better solutions) larger 
opportunities are given of if they reproduce, 
changing parts of genetic information, through a 
procedure of crossover. Mutation operator is 
used to change some genes in the chromosomes 
and to cause diversity in the population. The 
descent new population either can substitute the 
whole current population or to just substitute 
the individuals of smaller adjustment. This 
evaluation cycle, selection and generation, is 
repeated until that a satisfactory solution is 
found [4]. 

 
ELECTRIC IMPEDANCE METHOD 

Electric impedance method is a new smart 
health monitoring technique capable of on-line 
incipient damage detection in complex 
structures [5]. The basic concept of this 
impedance-based structural health monitoring 
technique is to monitor the variations in the 
structural mechanical impedance caused by the 
presence of damage. Since structural 
mechanical impedance measurements are 
difficult to obtain, this non-destructive 
evaluation technique utilizes the 
electromechanical coupling property of 
piezoelectric materials.  This health monitoring 
method uses one PZT patch for both the 
actuating and sensing of the structure’s 
response. A simple impedance model can 
describe the interaction of a PZT patch with the 
host structure. 

The equation for the PZT connected on the 
structure can be analyzed in the Eq. 1 for the 
frequency dependent electrical admittance 

)Y(ω  (inverse of impedance).  
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Variables aZ  and sZ  represent the PZT’s 
and the structure’s mechanical impedance, 

respectively. EY11
ˆ  is the Young’s modulus of the 

PZT at zero electric field, d31 is the 
piezoelectric coupling constant in an arbitrary 
x-direction at zero stress, T

33ε  is the dielectric 
constant at zero stress, δ  represents the 
dielectric loss tangent of the PZT, and a  is the 
geometric constant of the PZT. The Eq. 1 
clearly indicates the direct relation of the 
mechanical impedance of the structure to the 
electrical impedance bonded onto this structure. 

Damage in the structure reflects in changes 
of parameters such as mass, stiffness, or 
damping.  Assuming that the PZT’s parameters 
remain constant, any changes in the mechanical 
impedance ZS change the overall admittance. 
Previous experiments in the laboratories have 
shown that the real part of the overall 
impedance contains sufficient information 
about the structure, and is more reactive to 
damage, than the magnitude or the imaginary 
part. Therefore, all impedance analyses are 
confined to the real part of the complex 
impedance. 

 
EVOLUTIONARY COMPUTATION 

The search methods and optimization, 
usually, are classified as techniques based on 
calculation, search aleatory and enumeration. 
The methods guided by search aleatory are set 
in technical enumeration. However they are 
used for additional information to guide the 
search. 

Nowadays, Evolutionary Computation (EC) 
is constituted as an alternative to the 
conventional techniques in search and 
optimization. CE includes a growing number of 
methodologies, of which the most important are 
[6]: Genetic Algorithms, Evolutionary 
Programming, Evolutionary Strategies, Genetic 
Programming and Systems Classifiers. 

 
Genetics Algorithms 

Genetic Algorithms have been invented by 
Holland (1975) and is used for a wide variety of 
problems such as structural analysis, machine 
learning, cellular manufacturing, combinatorial 
optimization and game playing. Genetic 
Algorithm (GA) is a technique based on 
Darwin’s evolution. As GA simulates an 
adaptation process taking an initial population 
of individuals and applying to them artificial 
genetic operators for each generation. Under 
optimization conditions, each individual of 
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population is codified in a string of 
chromosomes, which represents a possible 
solution for a certain problem, while the 
individuals adaptation is evaluated through a 
fitness function.  

Basically, for individuals highly capable 
(better solutions) larger opportunities are given 
of if they reproduce, changing parts of their 
genetic information, in a procedure of 
crossover. The mutation operator is used to 
change some genes in the chromosomes and to 
cause diversity in the population. The 
descending new population either can substitute 
the whole current population or to just 
substitute the individuals of smaller adjustment. 
This evaluation cycle, selection and generation, 
is repeated until that a satisfactory solution is 
found.  

The terminology for genetic algorithms is 
[7]: Population, the collection of individuals 
represented by chromosomes that make up the 
possible solutions to the problem being solved. 
Chromosome, the encoding of the parameters 
for a solution to some objective function we are 
trying to optimize for. Each individual in the 
population of possible solutions is encoded into 
its own, distinct chromosome. The encoding 
can vary from a simple binary bit string or 
integer array to elaborate data structures. 
Individual, is a single member of the genetic 
algorithm population.  It is one of the solutions 
to the objective function.  Specific values of the 
decision variables are coded within the 
chromosome of the individual. The individual 
may contain additional information such as its 
fitness value, the generation number in which it 
was produced, and other statistics and facts 
about its identity and fitness. Gene, represents a 
parameter of the objective function. The 
parameter's locus in the chromosome can be 
comprised of one or more bits in a binary 
representation or one or more characters in a 
higher-level alphabet. The alleles of the gene 
are all the allowable values of the parameter 
that can be expressed in the encoding of its 
locus in the chromosome. Fitness, the value of 
fitness assigned to an individual in the genetic 
algorithm population. It is the value obtained 
from the fitness function (objective function) 
when the individual’s values for the decision 
variables are used. Fitness Function, provides a 
measure of fitness for a chromosome when 
applied to the problem to be solved. An 
evaluation function takes a chromosome as an 

input, decodes it into its natural representation, 
applies it to the problem and returns a number 
or a list of numbers that is a measure of the 
chromosome's performance on the problem to 
be solved. The interaction of a chromosome 
with an evaluation function provides a measure 
of fitness that the genetic algorithms use when 
carrying out reproduction. Generation, the 
collection of individuals in a population at one 
instant of time, or one cycle of the genetic 
algorithm. Members of the population are 
selected to be parents to produce offspring via 
crossover and mutation.  The offspring are 
placed in another population making up the next 
generation. This selecting parent is repeated, 
from one population generation to create a 
population for the next generation, until the 
stopping criteria for the genetic algorithm has 
been met. 
Genetic operations 

In order to improve the current population, 
genetic algorithms commonly use three 
different genetic operations. These are 
selection, crossover, and mutation. Both 
selection and crossover can be viewed as 
operations that force the population to 
converge. They do this by promoting genetic 
qualities that are already present in the 
population. Conversely, mutation promotes 
diversity within the population. In general, 
selection is a fitness preserving operation, 
crossover attempts to use current positive 
attributes to enhance fitness, and mutation 
introduces new qualities in an attempt to 
increase fitness.  

Roulette Wheel selection: This means that 
the chance of an individual being chosen is 
proportional to its fitness, Fig. 1.  Individuals 
are not removed from the source population, so 
those with a high fitness will be chosen more 
frequently than those with a low fitness. 
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Figure 1. Roulette Wheel Selection. 
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Crossover: A reproduction operator, which 
forms a new chromosome by combining parts 
of each one of two parent chromosomes. The 
simplest form is single-point crossover, in 
which an arbitrary point in the chromosome is 
picked. All the information from Parent A is 
copied from the start up to the crossover point, 
then all the information from Parent B is copied 
from the crossover point to the end of the 
chromosome. The new chromosome thus gets 
the head of one parent's chromosome combined 
with the tail of the other. Variations exist which 
use more than one crossover point, or combine 
information from parents in other ways.  

The crossover operation is the most 
important genetic operation.  This operation is 
used to create new individuals by combining the 
qualities of 2 or more genes, Fig. 2.  

 
Figure 2. The crossover operation. 

 
Mutation: A reproduction operator, which 

forms a new chromosome by doing (usually 
small) alterations to the values of bits. 

The general genetic algorithm uses several 
simple operations in order to simulate 
evolution. The goal of the genetic algorithm is 
to come up with a "good", but not necessarily 
optimal solution to the problem. 

 
METHODOLOGY 

Nature is a source of inspiration for 
engineering. The development of new 
proceedings for fault identification, based on 
these ideas, will be proposed in this paper in 
order to prevent catastrophic failures and to 
increase in-service lifetime. Also, one important 
aspect in health monitoring that must be 
analyzed is the life expectation, or prognosis of 
the life remains of the mechanical system in 
normal work condition. In general, this 
demands knowledge of the structure model in 
great details, which not always is possible; in 
addition the dynamic systems frequently present 
non-linear characteristics. In this work the 
detection and location of the faults are 
accomplished in two stages. Initially the method 

of electric impedance is used to determine the 
location of the faults. Later on takes place the 
quantification of the faults by using genetic 
algorithms. Genetic algorithms (GA) are 
optimization processes founded on principles of 
natural evolution and selection. A GA takes an 
initial population of individuals and then 
applies artificial genetic operators them, 
generation after generation. 

This method is based on high frequency 
ranges and local vibrations modes, therefore, 
the area of influence of each PZT is small. This 
technique can define with good accuracy the 
region of the fault. It is important to note that 
this method is not capable to supply the fault 
severity. The second part of this methodology 
supplies quantitative information of the fault. 
This phase can be done using genetic 
algorithms optimization, Figure 3. 

The direct problem, which consists of the 
determination of the modal properties in 
function of the physical structural variations, 
has unique solution. However, the fault 
characterization is an inverse problem and, it 
does not present a unique solution. Any 
optimization method that is supposed to adjust 
the model will have great chance of failing for 
systems with medium level of complexity or 
greater. There exist various methods of model 
reduction or choice of variables that intends to 
overcome this difficulty. Among the more used 
the sensitivity analysis can be mentioned, 
however, the fault can occur in positions where 
the variation of those parameters presents low 
sensitivity. 

This paper deals with this problem, and the 
main advantage of the proposed methodology is 
that the method of electric impedance defines 
with accuracy the location of the fault. Then, it 
is possible to reduce, drastically, the number of 
variables that will be used in the optimization 
process. 

The damage quantification problems are 
approached using the Frequency Response 
Functions (FRF) measured for a number of 
DOF’s (Degree of Freedom) and for a number 
of frequencies. The FRF’s are measured for the 
case of a healthy structure and for the structure 
under test. The method works and it uses the 
differences between the measured values and 
the reference values (measures accomplished in 
the structure without fault). After the damage 
quantification the finite element method is used 
to model the tested structure. The fundamental 
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stiffness of the obtained damaged substructures 
is identified by minimizing an objective 
function of the corresponding stiffness 
differences of the healthy structure and the 
structure under test. The stiffness decrease in 
the finite elements is considered as an 

indication for the presence of damage. 
Accordingly, the damage is localized further 
down to the damaged finite elements of the 
structure. The stiffness decrease also gives a 
measure for the extent of the damage - that is 
directly proportional to the stiffness decrease. 

 

 
 

Figure 3. Chart of the proposed methodology 
 

 
The choice of parameters that will be used 

to quantify the fault is accomplished after the 
finding of the fault region. After the definition 
of these parameters, the adjustment of 
FRFmeasured (situation with defect) is done 
through the optimization technique using GA. 
When the difference among those curves is 
smaller than a specified value the process is 
finished. The difference among the system 
matrices without defect, M, K and C, and the 
matrices M*, K* and C* supplies the 
quantification of the fault. For the analyzed case 
it was considered M* = M and C* = C. 

 
RESULTS 
Summary of how variables were implemented 
in GA.   

1. Code: Binary;   
2. To generate initial population: Aleatory;   
3. Objective function: minimize the FRF;   
4. Selection type: implemented the type 

“Roulette”;   
5. Crossing: implemented the types with one 

point and two points;   
6. Mutation: implemented the uniform type;   
7. Stopping criteria: if one of the stop 

approaches is satisfied the process it is 
concluded. In otherwise to return to the step 3. 

The fault detection in a structure is 
accomplished through the variation of the curve 
Function of the Response in Frequency, FRF. 
The fault simulated in this work consists of a 
traverse cut to the beam, with width b and depth 
a. To simulate the defect, it is considered the 
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variation of the moment of inertia I of the 
element, where, the width of the fault is 
maintained constant, and the same of the 
element. In the equation 2 it is possible to 
observe as the stiffness, K, obtained through the 
method of finite elements is influenced by the 
variation of the moment of inertia I. 

I → [ ]⎟
⎠
⎞

⎜
⎝
⎛ ⋅= ......I.

3L
EKK → ),( MKff =  (2) 

In Fig. 4 it is possible to notice how the 
depth of the fault influences in the reduction of 
the inertia moment.  

The objective function of GA used in this 
work is described below. The GA consists of 
the objective function minimization, so,          
Ec = 1/Fxe. 

 

)7:1()7:1( mensuredajreferencem ffff ==  
 

∑ −= ajm ffFxe   (3) 

 

where )7:1(and)7:1( mensuredreference ff  refers 
the first seven natural frequencies of the 
structure. 

 
Figure 4. Analysis of the influence of the fault 

introduced in the structure. 
 
The numerical application is carried out on 

an aluminum beam with 25 millimeters of 
width, 5 mm of thickness and 500 mm of 
length, Fig. 5. The beam is modeled by finite 
elements through the program "SmartSys", 
which includes the electromechanical coupling 
of the piezoelectric sensors/actuators.  The 
beam was divided in twenty elements of type " 
BEAM ", with two degrees of freedom per 
node, vertical displacement and rotation around 
the axis z. It is a clamped beam and the 
Frequency Response Function (FRF) of the 
system was considered for different situations 
of defects and loads. 

 
Figure 5. Discretized beam with element fifth and seventeenth highlighted. 

 
Initially, it is done a test to evaluate the need 

and importance of the first stage of the 
proposed methodology. The fault in the 5th 
element of the structure was accomplished 
altering in 20% it’s inertia moment. In this first 
stage all elements were considered in the 
optimization process. Meaning that we let free 
to be changed all inertia moments of the 
elements. The Tab. 1 shows the medium data 
obtained after 3 executions of the genetic 
algorithm. The accurate data (or ideals) for the 

inertia moments are: element five equal to 
0.8000 and others 1.0000. 

 
Table 1. Data obtained for optimization considering 
all elements. 
Element 1 2 3 4 5 

I (m4) 0.6950  0.6100 0.9261 0.7073 0.9326

Element 6 7 8 9 10 

I (m4) 0.9818 0.9472 0.5859 0.9560 0.9560
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Element 11 12 13 14 15 

I (m4) 0.9114 0.8528 0.9906 0.8944 0.7367

Element 16 17 18 19 20 

I (m4) 0.9724 0.9994 0.8217 0.7202 0.9443

 
In the previous situation it was considered a 

fault in the 5th element of the structure and with 
adjustment possibility in every inertia moment 
of the structure. We can observe that the 
algorithm didn't converge to the ideal situation, 
that is to say, it didn't get to detect that the fault 
was in the element 5. 

When we used the electric impedance 
technique to accomplish the structure 
monitoring, an area where is located the fault is 
found and with that the search space is reduced. 

The presented results consider the fault in 
the fifth and seventeenth elements, 
simultaneously. The damage was simulated 
decreasing the area inertia moment of 20% on 

fifth element and 15% on seventeenth element. 
Figure 5 shows this elements as well as the PZT 
positions. Starting from the model in finite 
elements, the FRF was set up for the conditions 
of mentioned faults up to 2000 Hz, where the 
appearance of the first seven natural frequencies 
can be verified beam with the element five and 
seven. 

The variables used in GA were: size of the 
population = 80; maximum number of 
generations = 80; crossover probability = 0.90 
(90%); and mutation probability = 0.05 (5%).  

Table 2 shows the results obtained from the 
accomplished simulations. In this case, the 
variation on elements 4, 5, 16 and 17 were 
represented by I4, I5, I16 and I17, respectively. 
The ideal values of these parameters to be 
found by GA are: I4 = 1.0, I5 = 0.8, I16 = 1.0 and 
I17 = 0.85.  The error considers the sum of the 
errors on the seven first natural frequencies 
considered. It was considered the average on 15 
runs.

Table 2. Results obtaed by using GA. 

Run 1 2 3 4 5 6 7 8 9 10 

Generation 80 80 80 80 80 80 80 80 80 80 
Average 

Standard
deviation

I4 (m4) 1.000 0.998 0.999 1.000 0.992 1.000 1.000 0.999 0.995 0.999 0.9982 0.00266 

I5 (m4) 0.799 0.806 0.804 0.800 0.802 0.801 0.800 0.813 0.814 0.804 0.8043 0.00531 

I16 (m4) 1.000 0.991 0.996 0.999 0.987 0.999 1.000 0.987 0.988 0.997 0.9944 0.00554 

I17 (m4) 0.850 0.845 0.851 0.850 0.846 0.851 0.850 0.851 0.853 0.850 0.8497 0.00241 

 
 

CONCLUSION 
Contrary to most model-based Non 

Destructive Evaluation (NDE) techniques, 
which rely on the lower order global modes, an 
approach utilizing high frequency structural 
excitation was developed.  This technique 
would be more useful in identifying and 
tracking small defects, in the sense that damage 
is a local phenomena.  

Another advantage of this methodology is 
that multiple damage, in several different 
locations, can be also analyzed.  It is almost an 
impossible task to optimize by GA for all 
possible combination of multiple damages, in 
different areas, if global frequency response 
functions are utilized.  However, in this method, 
the limited sensing area of each PZT sensor 
helps to isolate the effect of damage on the 

signature from other far field changes. Thus, the 
fault in a remote location has only minor 
influence to the other PZT sensors, and each 
PZT sensor reflects only the changes occurred 
in near field.  

It was proposed a combined damage 
detection methodology using electrical 
impedance technique, and an optimization 
procedure. GA was applied to quantify the fault, 
however, any other Structure Health Monitoring 
(SHM) algorithm that considers nonlinearities 
should be applied in it.  Impedance technique 
gives clear information about the damage 
location, and therefore, it is used to select a 
small subset of parameters.  The amount of 
damage is, then, described by values of 
parameter variation on the model design level. 
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The combined application of electric 
impedance techniques and GA can offer a 
robust and efficient criterion for identification 
of structural damages. Because, in the first stage 
of this methodology, the fault location can be 
determined with accuracy, the set of parameters 
for the optimization process is drastically 
reduced. The advantages of GA associated with 
the small number of variables to adjust make 
one to believe in the potentiality of the method. 
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